Estudia
- Artes y humanidades
- Ciencias
- Ciencias de la salud
- Ciencias sociales y jurídicas
-
Ingeniería y arquitectura
- Doble Máster Universitario en Ingeniería Industrial e Ingeniería Energética
- Máster Erasmus Mundus en Ingeniería Mecatrónica
- Máster Universitario Erasmus Mundus en Tecnología y Gestión para la Economía Circular
- Máster Erasmus Mundus en Transporte Sostenible y Sistemas Eléctricos de Potencia
- Máster Universitario en Ciencia y Tecnología de Materiales
- Máster Universitario en Conversión de Energía Eléctrica y Sistemas de Potencia
- Máster Universitario en Conversión de Energía Eléctrica y Sistemas de Potencia (Plan antiguo)
- Máster Universitario en Dirección de Proyectos
- Máster Universitario en Geotecnología y Desarrollo de Proyectos SIG
- Máster Universitario en Ingeniería de Automatización e Informática Industrial
- Máster Universitario en Ingeniería de Caminos, Canales y Puertos
- Máster Universitario en Ingeniería de Minas
- Máster Universitario en Ingeniería de Telecomunicación
- Máster Universitario en Ingeniería Energética
- Máster Universitario en Ingeniería Industrial
- Máster Universitario en Ingeniería Informática
- Máster Universitario en Ingeniería Mecatrónica
- Máster Universitario en Ingeniería Química
- Máster Universitario en Ingeniería Web (nuevo-implantación en curso 2024-25)
- Máster Universitario en Ingeniería Web (En Extinción)
- Máster Universitario en Integridad y Durabilidad de Materiales, Componentes y Estructuras
- Máster Universitario en Náutica y Gestión del Transporte Marítimo
- Máster Universitario en Tecnologías Marinas y Mantenimiento
- Máster Universitario en Prevención de Riesgos Laborales
- Información, acceso y becas
Laboratorio de Sistemas de Potencia
- Prácticas de Laboratorio (33.75 Horas)
- Clases Expositivas (3 Horas)
- Tutorías Grupales (4.5 Horas)
- Prácticas de Aula/Semina (15 Horas)
(Esta asignatura se imparte exclusivamente en inglés. Por lo tanto, toda la información de esta guía se encuentra en ese idioma.)
The Master’s course:
The main goal of the Erasmus Mundus Joint Master Degree (EJMJD) in Sustainable Transportation an Power Systems (STEPS) is the training of qualified staff in areas related to electrical energy management, emphasizing in power systems for renewable energies and electrified transportation systems. The Master presents a double approach: scientific and professional. In the scientific vision, training focuses on the design of two main applications: Electrical Power Systems and Electrical and Hybrid Traction Systems. On the other hand, in the professional scope, training is focused on the management of electrical energy (attending to two main issues, such as the management of energy in large consumers and the generation and transmission of electrical energy in a liberalized market). Three main lines have been considered as keystones in the Master:
· Electrical Power Systems
· Electrical and Hybrid Vehicles
· Energy Efficiency and Renewable Energies
The third semester (Univ. of Oviedo):
This subject belongs to the third semester, which has streamed in Sustainable Transportation or in Power Systems.
The subject:
The basic aim is to integrate previous knowledge to develop a project of some importance, learn how to deal with the specific instrumentation material of a power systems laboratory, understand safety issues when handling electrical equipment, and develop learning skills and independent work.
(Esta asignatura se imparte exclusivamente en inglés. Por lo tanto, toda la información de esta guía se encuentra en ese idioma.)
The students must certify that they have passed basic skills and competences in power electronics, power plants, electric machines, and control systems and automation. This can be either accomplished at his/her incoming student profile and CV or, if not covered there, by completing the related subjects of the first semester.
(Esta asignatura se imparte exclusivamente en inglés. Por lo tanto, toda la información de esta guía se encuentra en ese idioma.)
Basic:
CB6 Be original in the development and application of ideas, within a research environment.
CB7 Solution of problem in new and unfamiliar multidisciplinary environments, related to its knowledge area.
CB8 Integration of knowledge, facing the complexity of issuing judgments and sentences parting from some information that includes ethic and social liability constraints.
CB9 Ability of communicating justified decisions and conclusions, to specialized and unspecialized listeners.
CB10 Ability of autonomous learning.
Generic:
CG3 Knowledge of the principal mathematic tools used in the analysis, modelling and simulation of power systems.
CG4 Use of computers and digital processors in the analysis, design, simulation, monitoring, control and supervision of power systems.
CG5 Critical analysis of the information coming from the sensing and instrumentation subsystems.
CG6 Asses the risks of the use of electrical energy, as well as those of industrial installations, understanding the necessity of safety elements, protections and signalling in power systems.
CG7 Practical and experimental verification of monitoring and controlling electrical energy conversion systems, including safety operation of electric systems
CG9 Skills related to teamwork, recognizing different roles within a group and different ways of organizing research teams.
CG10 Ability to manage information: search, analysis and synthesis of the specific technical information.
CG11 Ability to assimilate and communicate information in English concerning technical
CG12 Ability to plan and organize work
CG13 Skills for critical reasoning, making decisions and making judgments based on information that include reflecting on social and ethical responsibilities of professional activity
CG14 Concern for quality and achievement motivation
Specific competences:
CE1 Understanding of the importance and the area of utilization of electrical power systems for generation, transmission and distribution of electrical energy
CE2 Characterization and modelling of the main energy sources and electric power loads
CE3 Ability to understand the basics of the dynamic modelling of electrical power systems.
CE5 Characterization, operation and design of electronic topologies and control methods for electric energy conversion
CE6 Identification of the main characteristics, design strategies and the constructive elements and materials of the Electrical Power Systems
CE8 Acquire the basic knowledge of power electronics to analyze and design electrical power systems
CE9 Ability to analyze and understand the design of electric drives
CE10 Understanding the fundamental characteristics, as well as advantages and drawbacks of electrical and hybrid traction systems compared to combustion engines
CE11 Acquire the knowledge of power electronics needed to analyze and design electrical and hybrid traction systems
Learning outcomes:
RA83 Learning how to deal with the specific instrumentation material of a power systems laboratory. Given the characteristics of this laboratory, safety issues when handling such equipment will be emphasized.
RA84 To integrate previous knowledge to develop a project of some importance.
RA85 Develop learning skills and independent work.
RA86 Presentation of a report/project in public.
(Esta asignatura se imparte exclusivamente en inglés. Por lo tanto, toda la información de esta guía se encuentra en ese idioma.)
Contents of the subject:
1. Power systems lab safety rules.
a. Laboratory safety rules.
b. Lab equipment safety guide.
2. Project assignment.
3. Project development.
a. Supporting calculations (some of them could have been previously done in a previous second-semester subject).
b. Simulations (some of them could have been previously done in a previous second-semester subject).
c. Hardware: design, development, and construction.
d. Follow-up meetings.
4. Project assessment.
a. Submission of the project documentation.
b. Oral presentation of the final report.
(Esta asignatura se imparte exclusivamente en inglés. Por lo tanto, toda la información de esta guía se encuentra en ese idioma.)
Learning methodology:
PRESENTIAL WORK | NON-PRESENTIAL WORK | |||||||||||
Themes | Total hours | Lectures | Class practice / Seminars | Laboratory practice / field / computer / language | Clinic practice | Group Tutoring | internships | Evaluation Sessions | Total | Group work | Autonomous Work | Total |
Power systems safety normative | 1.5 | 1.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5 | 0 | 0 | 0 |
Project assignment | 0.75 | 0 | 0.75 | 0 | 0 | 0 | 0 | 0 | 0.75 | 0 | 0 | 0 |
Project | 79.5 | 7.5 | 30 | 0 | 0 | 0 | 0 | 37.5 | 40 | 9.5 | 49.5 | |
Project tutoring | 15 | 0 | 7 | 3 | 0 | 5 | 0 | 0 | 15 | 0 | 0 | 0 |
Presentation of the project | 15.75 | 0 | 0 | 0 | 0 | 0 | 0 | 1.75 | 1.75 | 3 | 3.75 | 6.75 |
Total | 112.5 | 2 | 20 | 44 | 0 | 7 | 0 | 2 | 75 | 57,5 | 17,5 | 75 |
Hours | % | Total | ||
Presential | Lectures | 1.5 | 2,67 | 75 |
Class practice / Seminars | 15 | 26,67 | ||
Laboratory practice / field / computer / languages | 33 | 58,67 | ||
Clinic practice | 0 | 0 | ||
Group tutoring | 5.25 | 9,33 | ||
Internships (in external companies or institutions) | 0 | 0 | ||
Evaluation sessions | 1.5 | 2,67 | ||
Non-presential | Group work | 43.125 | 76,67 | 75 |
Autonomous work | 13.125 | 23,33 | ||
Total | 112.5 |
Exceptionally, in the event that health conditions require it, non-attendance teaching activities may be included. In this case, students will be informed of the changes made.
(Esta asignatura se imparte exclusivamente en inglés. Por lo tanto, toda la información de esta guía se encuentra en ese idioma.)
These are the maximum, minimum, and proposed values for the evaluation of the students:
Evaluation systems | Proposed percentage |
Oral tests (individual, group, presentation of topics/projects, etc.) | 30% |
Works or projects | 50% |
Observation Techniques (logs, checklists, etc.) | 10% |
Real / Simulated Task Performance Tests | 10% |
The final student’s qualification will be obtained as follows.
- 50% of the student’s mark comes from the assessment of the proposed projects. It is a mandatory proof.
- Another 10% will come from the simulations developed by the student, considered as a simulated task performance test. It is a mandatory proof.
- A 30% will come from an oral presentation of the developed project by the students. It is a mandatory proof.
- Finally, the 10% left comes from the assistance to the presential hours (a minimum of 50% is required).
(Esta asignatura se imparte exclusivamente en inglés. Por lo tanto, toda la información de esta guía se encuentra en ese idioma.)
It will be provided by the faculty depending on the assigned project.